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Abstract

We propose a linear programming framework to model distribution network
characteristics, and market clearing processes for flexible load and distributed
energy resources providing reserve and reactive power compensation. We first
show that the Nash equilibrium solution representing the interaction between
utility and customers for demand response and distributed reserve transac-
tions can be approximated by a linear program when the players (i.e. the
customers) are numerous and tend to become infinitesimal. Then we provide
a linear program to reveal the market prices, corresponding to the marginal
cost for the utility. The goal in developing this model is to provide a new
module for a regional long term model of development of smart energy sys-
tems. This module will then introduce in the modelling of energy transition,
the new options and constraints that are provided by a penetration of renew-
ables with the possibility of implementing distributed markets for demand
response and system services permitted by the development of the cyber-
physical layer. A case study of a potential smart urban distribution network
in Europe is carried out and provides numerical results that illustrate the
proposed framework.
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1. Introduction

In this paper we propose a linear programming framework to model dis-
tributed generation, flexible loads and distributed energy resources (DERs)
along with the distribution grid topology and power flow in the context of
smart energy systems in the presence of variable renewable energy. This
modeling framework enables the “commoditization” of demand response, the
introduction of decentralized markets for the optimal scheduling of secondary
reserve, storage-like flexible loads and reactive power compensation through
the dual use of volt/var control devices that accompany DERs. This linear
program has the potential to capture optimal adaptive operating costs, and,
as such, provide the operating cost module of a long-term optimal energy
technology mix capacity expansion model such as ETEM-SG [3], that is ca-
pable of emulating the development of an efficient regional energy system
with a planning horizon of 30 to 50 years.

The drive toward sustainable development will be facilitated by the tran-
sition to smart energy systems relying on the interface and co-optimization of
the cyber and physical layers modeling the Electricity Cyber Physical System
(CPS). Increasing penetration of intermittent and volatile renewable energy
sources connected at the transmission (e.g. wind farms) or the distribution
networks (e.g. roof top PV panels) will impose new operational requirements.
Fortunately, the advent of grid friendly Flexible loads and DERs including
variable speed drive powered CHP micro-generators [31], heat pumps [35, 26],
and electric vehicles [9, 14], provide new opportunities to optimize power sys-
tems by providing fast reserves and putting accompanying volt/var control
devices (PV inverters, EV chargers and the like) to dual use for reactive
power compensation. Under these circumstances, flexible loads and DERs
can significantly improve operational and investment efficiencies.

As indicated above, our aim is to incorporate a representation of the
constraints along with the significant degrees of freedom and capabilities of
these new technology developments at distribution level in a regional long-
term multi-service and multi-energy model. Linear programming models for
regional energy systems analysis were introduced early on (see e.g. [47, 48, 49]
) in conjunction with the development of the MARKAL/TIMES [15] family
of models under the aegis of ETSAP, a committee of the IEA. The interest
for a regional or local energy modeling capability has been recently strength-
ened by the development of the smart grid and smart city concepts (see e.g.
[5, 23, 22, 24, 27]). The representation of demand-response in the open-
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source energy model ETEM-SG [12] has been described in [3], and a similar
development in TIMES has been proposed in [6], whereas a representation
of smart grids has been introduced in the open-source energy modeling kit
OSeMOSYS [17, 46].

This paper focuses on incorporating into a linear program, which would
be compatible with the aforementioned regional long-term models, the ability
of DERs (broadly construed distributed flexible loads, generation and other
resources) to provide reserves, reactive power compensation and shift their
operation over time so as to reduce losses, congestion, wholesale energy costs
and distribution asset (particularly transformer) wear and tear.

Distribution Location Marginal Cost Based Pricing (DLMPs) are attract-
ing increasing attention in the literature. Reactive power costing/pricing was
addressed early on in [4] using Alternating Current (AC) load flow models.
Several works [16, 42, 44, 30, 33, 43] have addressed DLMPs at various lev-
els of detail but have all modeled congestion using the transmission network
paradigm, where transmission line power flow is constrained by each line’s
capacity. Whereas this may be appropriate for high voltage transmission line
networks, in distribution networks, congestion appears in the form of hard
voltage magnitude constraints that must be observed at each node/buss,
and also as soft constraints at transformers whose life declined rapidly when
power flowing through them exceeds their rated capacity and at lines whose
marginal losses increase rapidly with power flowing over them. We believe
that use of models that capture salient real and reactive power issues and
marginal distribution asset life degradation is crucially necessary and appro-
priate in modeling distribution networks for today’s consumption technolo-
gies and DERs. As long as real and reactive power and losses are modeled,
whether these models are non-linear as is the full AC load flow model or they
derive from an appropriately linearized version of the full AC model with re-
peated recalculation of linearization gaps is an approximation discussion of
lesser significance. Indeed, full AC load flows have been used amongst others
in a centralized market clearing formulation in [36, 8, 38, 13, 29, 11, 45, 42],
although detailed distribution network costs and congestion are addressed
only in [36, 38]. Robust-convergence distributed dual decomposition models
have been developed recently using Proximal Message Passing (PMP) algo-
rithms. PMP algorithm based models have been applied to very large net-
works (see [19, 20] and references therein) although most have not modeled
reactive power and complex DERs with inter temporally coupled preferences.
PMP based distributed DLMP algorithms on a fully developed distribution
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network model have been reported in [37] and [39].
In this paper, we have developed a tractable linear DLMP model derived

from the full AC distribution network model reported in [36, 38]. We use an
iterative linearization that recalculates the point about which we linearize till
the linearization gap and slope converge. We rarely need more than few it-
erations to achieve convergence for a reasonably tight convergence tolerance.
Our model is capable of representing a daily cycle of a distribution network
and of deriving DLMPs and demand response schedules for each period in
each of several typical days that we use to derive weighted averages and esti-
mate annual operating costs that are compatible with fully adaptive load and
DER behavior. The ultimate goal is to introduce distribution network costs,
benefits and adaptability into a regional integrated energy systems analysis
model that optimizes the transition costs to environmental sustainability of
a grid that relies on variable energy generation, smart grid management and
broadly construed demand response. This will be the object of a separate
paper.

The proposed approach is consistent with the one advocated by Mathiesen
et al. [28], where they show that “... the transition from fossil fuels towards
the integration of more and more renewable energy requires rethinking and
redesigning the energy system both on the generation and consumption side.
Smart Energy System must have a number of appropriate infrastructures for
the different sectors of the energy system, including smart electricity grids,
smart thermal grids (district heating and cooling), smart gas grids and other
fuel infrastructures...”. They build prospective scenarios for Denmark 2050,
using the CEESA project [25, 32] scenario building tool.

This paper’s contribution is the computationally efficient modeling of
demand response and the associated reserves [7], as well as the reactive power
compensation [18] that can be provided by Distributed Energy Resources and
flexible loads. Thus, sufficient introduction of DERs can act synergistically
to mitigate the volatility of renewable generation [41] and enable its strong
integration into the electricity grid. Moreover it is consistent with the game
theoretic approach proposed in [50] as it shows that the LP framework can
be justified as a limit of Nash equilibrium solutions, when the players are
numerous and tend to have infinitesimal influence on the price.

The paper is organized as follows: In section 2 we show, that under appro-
priate conditions of grid cost convexity and small, price taker participants, a
Linear Program leads to the usual competitive market equilibrium. In sec-
tion 3 we develop a linear program that represents accurately the market
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based mechanisms driving optimal demand response in smart grids. A sim-
ilar approach is used for the representation of distribution network markets
for reserves and reactive power, with all three products, real power, reactive
power and reserves clearing simultaneously; in section 4 a numerical illustra-
tion is given, based on a scenario of strong variable energy penetration in a
european region. In section 5 we conclude and discuss further developments
envisioned in integrating this distribution grid sensitive model into regional
integrated energy systems, like ETEM-SG or OSeMOSYS.

2. Modeling demand response in a linear program

We show that the nonzero sum game describing the relation between a
cost minimizing retailer and the set of customers who individually optimize
their benefits from real power, reactive power, and reserve transactions leads
under appropriate grid cost convexity and participant price taker conditions
– i.e. customer demand being arbitrarily small – to an equilibrium which
is described by the solution of the linear program. In [2] the relationship
between a retailer practising real-time pricing and a finite set of customers
optimizing the timing of their electricity consumption is modeled as a non-
cooperative game which admits, under some general conditions a unique and
stable Nash equilibrium. The model is summarized below, in a slightly more
general formulation than the one used in [2]. The Grid Operator (GO) has
access to its own production equipment and also to the wholesale market.
Depending on the total demandD(t) and the level of reserve <(t) that the GO
must secure during a time slot t of the day, the marginal cost of production
is given by γ(<(t), D(t)), which is the price that will be charged. Each
consumer i has a minimum daily requirement of electricity βij for each type
of service j. Let xij(t) denote the demand by consumer i for service j at time
slot t. The following constraints must thus be satisfied:∑

t

xij(t) ≥ βij, (1)

together with:

xij(t) ≥ xij[min](t) (2)

xij(t) ≤ xij[max](t) (3)

where xij[min](t) and xij[max](t) are given bounds.
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The consumer can also use its flexible load to provide reserve to the GO.
Let rij(t) denote the contribution to reserve by consumer i using the flexible
load technology (e.g. PHEV or heat pump) providing service j at time slot
t. A capacity constraint must hold for each i, j, t:

rij(t) ≤ δij(ζ
i
j(t)− αjxij(t)), (4)

(5)

where ζ ij(t) is the available capacity at time slot t.
Let us define the following vectors: x = (x(t))t∈T , where x(t) = (xi(t))i∈I ,

with xi(t) = (xij(t))j∈J , and, similarly, r = (r(t))t∈T , where r(t) = (ri(t))i∈I ,
with ri(t) = (rij(t))j∈J .

We assume that this total contribution will never exceed <(t). This is
the case, if

∑
j,i δ

i
jζ
i
j(t) is much smaller than <(t). The total demand in time

slot t is given by:

D(t) =
∑
i

∑
j

xij(t), (6)

and the total contribution to reserve is given by

R(t) =
∑
i

∑
j

rij(t). (7)

This determines the marginal cost γ(<(t) − R(t), D(t)), and hence the
tariff payed at time slot t by each customer. The aim of the i-th customer is
thus to minimize

ψi(x, r) =
∑
t

γ(<(t)−R(t), D(t))

(∑
j

xij(t)

)
, (8)

given the actions taken by the other agents and under the constraints (1) to
(4). Note that the interdependence among customers comes from the price
determination equation, see (6). The dual variables corresponding to the
constraints (1) to (4) respectively are denoted ηij, µ

i
j(t), ν

i
j(t) and πij(t); they

are greater or equal to zero. The Lagrangian for the i-th consumer can thus
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be written as:

Li = ψi(x, r) +
∑
j

ηij

(
βij −

∑
t

xij(t)

)

+
∑
t,j

µij(t)

(
xij[min](t)− xij(t)

)
+
∑
t,j

νij(t)

(
xij(t)− xij[max](t)

)
+
∑
t,j

πij(t)

(
rij(t)− δij(ζ ij(t)− αjxij(t))

)
.

(9)

The first order conditions for a Nash equilibrium are given by:

0 =
∂Li
∂xij(t)

=
∂ψi(x)

∂xij(t)
− ηij − µij(t) + νij(t)− πij(t) δij αj, (10)

0 =
∂Li
∂rij(t)

=
∂ψi(r)

∂rij(t)
+ πij(t). (11)

which can be written as:

0 = γ
(
<(t)−R(t), D(t)

)
+ γ′D

(
<(t)−R(t), D(t)

)∑
k

xik(t)

−ηij − µij(t) + νij(t)− πij(t) δij αj (12)

0 = γ′<(<(t)−R(t), D(t))− πij(t). (13)

with the following complementarity conditions:

ηij ≥ 0 and ηij

(∑
t

xij(t)− βij
)

= 0, (14)

µij(t) ≥ 0 and µij(t)
(
xij(t)− xij[min](t)

)
= 0, (15)

νij(t) ≥ 0 and νij(t)
(
xij(t)− xij[max](t)

)
= 0 (16)

πij(t) ≥ 0 and πij(t)
(
rij(t)− δij(ζ ij(t)− αjxij(t))

)
= 0. (17)

Applying classical theorems (see e.g. [40]), we can easily find conditions
which assure that an equilibrium exists and that it is unique if the γ(<(t), D(t))
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function is strictly convex and increasing in both argument. Notice also that
conditions (17 and (13) lead to the conclusion that each player contributes
all the available capacity remaining in each of the flexible load to the reserve
requirement.

We model now a situation where there are many small agents. To do
so, let us assume that each customer i is replicated n times with demand
parameters βij/n, capacity parameter ζ ij(t)/n and bounds xij[min](t)/n and
xij[max](t)/n. This describes a game where the number of players increases
while the influence of each player diminishes. The first order conditions for
a Nash equilibrium (12) are now given by:

0 = γ
(
<(t)−R(t), D(t)

)
+ γ′D

(
<(t)−R(t), D(t)

)∑
k x

i
k(t)

n
−ηij − µij(t) + νij(t)− πij(t) δij αj (18)

0 = γ′<(<(t)−R(t), D(t))− πij(t). (19)

When n → ∞ the conditions of a competitive equilibrium are met. Note
that for each type of player i and type of service j, the following constraint
must hold: ∑

t

xij(t)

n
− βij
n
≥ 0, (20)

which is the same as (1). The same reasoning applies for the other con-
straints. As a consequence, the KKT multipliers are the same as before.

In the large n limit, the term γ′D
(
<(t) − R(t), D(t)

)∑
k x

i
k(t)

n
tends to 0,

the condition (13) thus becomes:

γ
(
<(t)−R(t), D(t)

)
− ηij − µij(t) + νij(t)− πij(t) δij αj = 0. (21)

Each consumer is now a price taker. His decisions have no influence on the
price. The quantities xij(t) are then determined by using (21) together with
the complementarity conditions (14)-(16). As before, each agent uses all the
unused available capacity of its flexible load to provide reserve.

Remark 1. Here we make the simplifying assumption of a sequential deci-
sion, i.e. the agent first decides on energy usage and then offers excess capac-
ity to reserves. This is compatible with sequential market clearing which was
indeed the case in advanced markets in the US. Now, energy and reserves are
cleared in ”joint” markets, where it is indeed possible, depending on the price
of reserves relative to the price of energy for an agent to trade off energy for
reserves.
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In order to represent the GO cost, a linear program is particularly suit-
able. There are m generation facilities (indexed by κ), n demand blocks
(indexed by θ). The model is characterized by the following parameters:

• Number of hours in demand block θ : Hθ,

• Cost per produced MWh by facility κ : cκ,

• Capacity in MW of facility κ : Kκ.

Let zκθ be the energy flowing from facility κ during the time slot θ. Let
yκθ be the contribution to reserve from facility κ during the time slot θ. If the
timing of demands of type j for consumer type i were under direct control
of the retailer, it would solve the following linear program:

minimise
{zκθ, xij(θ)}

n∑
θ=1

m∑
κ=1

cκzκθ (22)

under the following constraints:

m∑
κ=1

zκθ −
∑
i,j

xij(θ) ≥ 0, (23)

−zκθ ≥ −(Kκ − yκθ)Hθ, (24)

Kκ − yκθ ≥ 0 (25)

zκθ ≥ 0, (26)
m∑
κ=1

yκθ +
∑
i,j

rij(θ) ≥ <(θ), (27)

yκθ, r
i
j(θ) ≥ 0, (28)∑

θ

xij(θ) ≥ βij, (29)

xij(θ) ≥ xij[min](θ), (30)

xij(θ) ≤ xij[max](θ). (31)

rij(t) ≤ δij(ζ
i
j(t)− αjxij(t)). (32)

These constraints correspond to the demand having to be met (23), the
available capacity after contribution to reserve of facility κ (24) and the
energy flows having to be positive (26). The dual variables for equations
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(23), (24), (27), (29), (30), (31) and (32) are respectively given by $θ, ϑκ,θ,
ωθ, η

i
j, µ

i
j(θ), ν

i
j(θ) and πij(θ). By applying the optimality condition for a

linear program and if the variables xij(θ) are in the optimal basis, meaning
that their reduced costs must be zero, we get the following:

νij(θ)− µij(θ)− ηij − πij(θ) δij αj +$θ = 0. (33)

This equation is to be compared with (21). The dual variable $θ corresponds
to the marginal production cost to satisfy demand. Therefore we conclude
that (33) and (21) are identical. If the rij(θ) are in the basis, the following
reduced cost must be equal to zero

πij(θ) + ωθ = 0. (34)

Because reserve has to be provided, ωθ is strictly negative, so πij(θ) must
be strictly positive and the corresponding constraint is active, for all i, j, θ,
which means that each category of consumer will use all its spare capacity
to provide reserve.

Henceforth, the solution of the linear program gives also the optimal re-
sponse of consumers to a marginal cost reflecting prices. We could develop
similar arguments for the representation of optimal response of users to mar-
ket based incentives to provide decentralized reactive power compensation.
This gives a theoretical justification for the linear programming approach
that we propose in the next sections.

Remark 2. We wish to conclude by noting that the proof given above is
based on a power system where the actual Transmission and Distribution
Network is not modeled, and hence line losses and load flow constraints
are assumed to be negligible. Although these assumptions are reasonable
and allow us to prove the equilibrium existence in a succinct and elegant
manner, it should be noted that they are not necessary. In fact, a simi-
lar result, namely the existence of a unique and stable Nash equilibrium,
has been shown for price taking agents that see energy and reserve prices
which are sensitive to their exact location in their network. The marginal
cost – and hence price – at a particular location during the same time slot
t may differ across locations because of the non-linear AC load flow rela-
tionships and location specific marginal line losses. For example, an agent
located at node n and consuming energy dn(t) while providing reserves rn(t),
in fact consumes energy (dn(t)[1 + marginallossesn(t)]) and provides re-
serves (rn(t)[1 + marginallossesn(t)]), and hence may prefer to see higher
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marginal losses if the price of reserves is higher than the price of energy. In
[7] it is shown that whereas a stable Nash Equilibrium exists, it may differ
from the socially optimal equilibrium, converging to it asymptotically as the
size of reserves offered at location n is negligible relative to the inflexible de-
mand at that node, where inflexible demand is demand that can not trade off
energy for reserves.

3. A linear program to represent distribution network markets for
demand response, reserves and reactive power

3.1. Toward a representation of demand response and other distribution net-
work markets in global energy models

Global energy models, like MARKAL [15], MESSAGE [34] or TIMES
[21], address, for a given region, an optimization of a reference energy sys-
tem, including extraction and source of primary energy, import and export of
various energy forms, conversion and process for the production of final en-
ergy and choice of demand devices to provide the useful energy (demand for
energy services). The planning horizon is generally long enough to offer a pos-
sibility for the energy system to have a complete investment technology mix
turnover (45 years for MARKAL, and even 100 years for the use of TIMES
and MESSAGE in the assessment of climate policies). In these models the
needed adjustment of production to demand for non-storable energy forms,
like electricity (ELC) or low temperature heat (LTH), is represented through
the introduction of time slices that divide each year and permit an approxi-
mation of the load curve. For a given time slice, the fraction of the demand
which falls in this time slice is a key parameter. Recently, several models have
been proposed to include demand response, and more generally, smart grids,
in global energy models [3, 5, 46]. In these approaches the demand response
and grid storage activities are modeled within the time structure defined by
the time slices of the global energy model. This necessitates, nevertheless
the introduction of a new set of constraints to model the operations at the
distribution level. Note that the introduction of new elements in the model
is facilitated in open-source codes such as OSeMOSYS [17] or ETEM [12]. In
the rest of this section we propose a complete sub-model that describes the
costs and benefits optimized subject to distribution network load flow and
other constraints. Intermittent production from renewables, grid storage and
demand response in a regional energy system are modeled and represented by
constraints. In section 4, the aforementioned sub-model is tested on realistic
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input data consistent with a case study inspired by a recent energy plans of
a Swiss region [1].

3.2. A linear program to represent the optimal operation of a smart distribu-
tion grid

In this section, we follow the general principles of section 2 and propose
a linear programming representation of the optimal scheduling of centralized
and distributed loads, storage and generation units for a local/regional power
system. Figure 1, below, summarizes the simplified topology of the distribu-
tion system that we consider in our case study. The∞-bus (b∞) corresponds

1

C1 b1

b1

Figure 1: Representation of the power network. Circles denote buses, squares represent
power electronics, flexible loads and distributed generators.

to the substation and each downstream bus (b1 and b2) corresponds to loads
and DERs connected to a distribution feeder. The model’s logic is as fol-
lows: At bus ∞ there are conventional generators and wind generators. The
production of wind generators is exogenously defined and incurs no variable
cost. There are n distribution feeders connected to bus ∞. Each feeder bus
hosts (i) demand corresponding to conventional loads (typically lighting),
which consumes as a by-product “reactive power” whose magnitude depends
on a constant power factor, (ii) flexible loads (typically EV battery charging,
variable speed drive heat pumps for space conditioning), and (iii) PV gen-
eration. EV battery chargers and PV inverters can provide reactive power
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compensation as needed when they have excess capacity, i.e. when the sun
does not shine or when the EV battery is not charging. During a given time
slice, flexible loads produce value (or utility to their owners) by providing a
service, such as space conditioning that maintains inside temperature within
a comfort temperature zone, increasing the state of Charge of thee EV bat-
tery and the like. Although in principle other types of reserves can be also
modeled, we focus on secondary reserves made necessary by renewable gen-
eration and uncertainty in conventional loads and generation. The reserve
required by the system operator can be provided by conventional centralized
generators but also by the flexible loads, in particular by the PHEV/EVs.
When the apparent power flowing through a feeder’s transformer rises close
to or exceeds its rated capacity, the transformer’s life degrades rapidly con-
tributing to distribution network’s variable costs. High apparent power flow
is also associated with high distribution line flows. Reactive power compen-
sation decreases the apparent power flow providing significant cost reduction
through lower energy losses and transformer life degradation. In addition,
requiring less reactive power at bus ∞, reduces further the grid opportunity
cost associated with the provision of reactive power compensation at the
substation. The production of energy by conventional generators generates a
cost (cost of fuel and variable operation cost per kWh. The model optimizes
real power, reactive power and reserves associated with each participant so
as to minimize grid costs and participant costs minus benefits, subject to
load flow, voltage, energy balance and reserve requirement constraints.

3.2.1. Main assumptions

Assumption 1. The transmission network is made up of a single bus, i.e.
transmission lines connecting centralized generators Gk, k ∈ {1, . . . , K} , to
the bus that supplies all distribution substations have negligible resistance.

Assumption 2. There are N distribution feeders denoted by n with n ∈
{1, . . . , N}. Each distribution feeder is represented by a single aggregated line
and a single transformer with all of the demand and distributed resources and
generation at the end of the line. The aggregated line has parameters Rn and
Xn representing the line’s aggregate resistance and reactance (Xn = 2πfLn
where f is the frequency – 50Hz –, and Ln is the line’s in series inductance).
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The line transformer has rated capacity for apparent power flow2 Sn.

Assumption 3. The year is represented by a small number of typical days,
say 6 days corresponding to the three seasons (Winter, Summer, Spring-Fall)
and two week day types (working weekday, weekend-Holiday). Each day is
subdivided into T groups of hours, called timeslices or time slots denoted by
t with t ∈ {1, . . . , T}. δt is the duration of timeslice t expressed as a fraction
of the year.

Assumption 4. Demand for energy services and ability for distributed gen-
eration or resource provision is specified as follows:

(i) for conventional demand at feeder n, such as lights or non-storage/thermal
demand, real power demand is denoted Dn(t), and reactive power de-
mand3 is Qn(t) = γnDn(t); it is specified for each group of hours t.

(ii) For flexible/storage like loads, such as thermal storage buildings, space
heating/conditioning, electric vehicles and the like, it is specified for
the whole day or for an aggregation of several periods.

(iii) For distributed generation (such as PV) the output is known4 for each
period t, i.e. gPVn (t), is an exogenous input.

(iv) For distributed resources that accompany electric vehicles or PV gener-
ation, inverters and converters that are embodied can produce reactive
power using excess capacity that they may have. For example, a PV
with capacity ḡPV producing during time t at 60% of its installed ca-
pacity can produce

QPV (t) =
√

(ḡPV )2 − (0.6ḡPV )2,

if needed to compensate for the reactive power consumed by inductive
or other loads with a less than 1 power factor. Note that since the

2The apparent power is the norm of the complex power vector (real part is active power,
imaginary part is reactive power.)

3The parameter γn = tan(φn) is a fixed factor taking value in the range of .3 to .577 to
.70 as φ ranges from 17 to 30 to 35 degrees. Today, residential loads have φ ∼ 30 degrees.
Note that normal power factor ballast neon lights have a φ of 50 to 60 degrees!

4In an advanced formulation the output will be a random function of t with known
probability measure.
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production of real power of the PV is known, i.e. set exogenously
during a period t, the maximum reactive power it can produce is also
known and can be expressed as a linear inequality. The approximation
introduced, is simply that there is no capability to decide to produce
less from the PV installation than the solar irradiation allows during
period t in order to provide more reactive power compensation.

Assumption 5. For flexible loads that also have power electronics/inverters,
reactive power compensation capabilities will be limited to a linear constraint,

QF (t) ≤ D̄F −DF (t),

which will be exact when DF (t) = 0. This is not too bad since flexible loads,
with a notable exception when they offer down secondary reserves, will be
consuming either at maximum power D̄F or at 0.

Assumption 6. Loss of life (number of hours of economic life lost per hour of
clock time) of the aggregated transformer in radial feeder n depends on the
ambient temperature and the apparent power flowing through it. It is equal
to

Γn(θAmbn (t), S∞n (t)) = e
15000
383
− 15000

273+θHn (t)

where

θHn (t) = θAmbn (t) + k1,n + k2,n

(
S∞n (t)

SNn

)2

,

with
(S∞n (t))2 = (D∞n (t))2 + (Q∞n (t))2,

and SNn the nominal or rated capacity of the aggregate transformer in radial
line n; θHn (t) is the the hottest spot temperature with the values of the
constant coefficients k1,n and k2,n estimated from the relationships:

110 = 25 + k1,n + k2,n

(
SNn
SNn

)2

and

180 = 25 + k1,n + k2,n

(
1.55SNn
SNn

)2

.

Assumption 7. Generator ramp constraints are negligible.
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3.2.2. Quantities involved and their definition

vn: Tension in feeder n. The units are chosen so that the tension is nor-
malized with value equal to 1.

Dn,i(t), D
F
n,i(t), Qn,i(t), Q

F
n,i(t): Real power of conventional and flexible load,

reactive power conventional and flexible loads. There may be multiple
loads at each location n, i = 1, 2, . . . , i(n) each with its own utility.
All are decision variables except for Qn,i(t) which is a fixed multiple of
Dn,i(t),

Qn,i(t) = γn,i(t)Dn,i(t), for γn,i(t) given,

−[D̄F
n,i(t)−DF

n,i(t)] ≤ QF
n,i(t) ≤ D̄F

n,i(t)−DF
n,i(t).

Also, in general F ∈ {σ, V } two types of flexible loads, space heat-
ing/conditioning through varying speed heat-pumps and electric vehi-
cles5.

D̄n,i(t), D̄
F
n,i(t): Maximal consumption of conventional and flexible load6.

Q∞n (t) is the uncompensated reactive power consumed in the distribution
feeder n plus uncompensated reactive power losses over the distribution
lines which has to be compensated at the substation.

Dn(t), DF
n (t), Qn(t), QF

n (t): where Dn(t) =
∑i(n)

i=1 Dn,i(t) and similarly for
DF
n (t), Qn(t), QF

n (t).

<Vn (t),<σn(t) :Reserves provided during period t by electric vehicles at n and
by space heating/conditioning at n.

Gk(t),<k(t), Ḡk, Gk : Power and reserves provided by centralized generator
k during hour group t, its capacity, and its minimum generation level.
The latter two are input parameters.

ck, rk : variable cost per PJ and cost per PJ of reserves offered by centralized
generator k.

5The list can be of course expanded.
6Note that Dn,i(t) = D̄n,i(t) since conventional loads are inelastic and hence can be

considered fixed.
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π<,∞,0(t) : Opportunity cost for reactive power generation from centralized
generators. It corresponds to the selling price of reserve, or the trading
price of electricity on the transmission grid.

Wk(t), W̄k : Centralized wind generation k expressed as a fraction of its
installed capacity W̄k during hour group t, an exogenously set variable
representing prevalent wind during t at k.

gPVn (t), ḡPVn : Distributed generation of PV installed in feeder n, and its
capacity. Both are exogenously specified.

QPV
n (t) : Reactive power output of PV facility at n during hour group t.

<(t) +
∑

k ξkWk(t) : System reserves needed during hour group t to cover
load and wind generation variability. The ξk’s are given.

xn(t) : State of charge of EVs at radial line n at period t.

∆xn(t) : The demand for transport to be delivered by EV batteries at period
t.

θn(t) ≤ θn(t) ≤ θ̄n(t) : inside temperature of space conditioned facilities at
radial line n during hour group t and its comfort zone.

ηgainn (t), ηlossn (t) : coefficients of heat gain or loss at radial line n during period
t.

θn(t)Ambient : Ambient temperature in radial distribution n during period t.

3.2.3. Performance criterion

We define here the subproblem of minimizing the power system operation
cost for a given typical day. In ETEM-SG this will be integrated in the whole
expression of the system cost over all periods, typical days and time-slices.

min
G,<,D,Dθ,DV ,<θ,<V ,Qθ,QV

∑
t

δtη

{
π<,∞,0(t)

[
Ḡ∞ −

√
(Ḡ∞)2 − (Q∞(t))2

]

+
K∑
k=1

(ckGk(t) + rk<k(t)) +
∑
n

ctrn Γn(θAmbn (t), S∞n (t))

}
(35)

where η = 31.536 is the conversion factor from GW to PJ per Year and δt
is the timeslice t duration, expressed in fraction of year. Let us detail each
term of the model
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First term. δtηπ
<,∞,0(t)

[
Ḡ∞ −

√
(Ḡ∞)2 − (Q∞(t))2

]
. There is an “oppor-

tunity cost” incurred by the distribution substation generator due to the
provision of reactive power Q∞(t) =

∑
nQ
∞
n (t). A generator with capacity

C∞ can produce real and reactive power, P∞(t) and Q∞(t), while respecting
the constraint

(P∞(t))2 + (Q∞(t))2 ≤ (C∞)2. (36)

Real power cannot be negative, while reactive can be either positive or nega-
tive. Positive Q∞(t) indicates generation and negative Q∞(t) indicates con-
sumption of reactive power. When the high voltage clearing price of real
power π<,∞,0(t) is larger than the fuel cost of the generator, the generator
wishes to generate real power at its full capacity and sell it to the high voltage
market. However, due to the fact that it must generate reactive power, and
the constraint (36) above, it is forced to generate less real power, namely

P∞(t) ≤
√

(C∞)2 − (Q∞(t))2. (37)

This results in decreasing its potential generation of real power by

C∞ −
√

(C∞)2 − (Q∞(t))2

and losing income

δtη(π<,∞,0(t)− c∞)
(
C∞ −

√
(C∞)2 − (Q∞(t))2

)
adjusted by the fact that the generator will also save fuel cost by virtue of
the fact that it will generate less real power. We assume here that the fuel
cost c∞ is negligible.

Second term.
∑K

k=1 δtη(ckGk(t) + rk<k(t)). It is the sum for all centralized
generator k of providing energy output δtηGk(t) and reserve δtη<k(t).

Third term.
∑

n c
tr
n δtη Γn(θAmbn (t), S∞n (t)). It represents the cost associated

with the loss of life duration for the transformers at each feeder, which is a
function of the apparent power flow S∞n (t) =

√
(P∞n (t))2 + (Q∞n (t))2 through

them and the ambient temperature.
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Linearized version. The linearized version is obtained through a Taylor de-
velopment in the neighborhood of the optimal solution. Therefore, an update
procedure should be implemented when using the linearized version.

min
G,<,D,Dθ,DV ,<θ,<V ,Qθ,QV

∑
t

δtη

{
π<,∞,0(t)[Ḡ∞ −

√
(Ḡ∞)2 − (Q∞,0(t))2+

Q∞,0(t)(Q∞(t)−Q∞,0(t))√
(Ḡ∞)2 − (Q∞,0(t))2

] +
∑
k

(ckGk(t) + rk<k(t)) +
∑
n

ctrn
{

Γn(θAmbn (t), S∞,0n (t))+

∑
n

∂Γn(θAmbn (t), S∞n (t))

∂Sn(t)
|S∞,0
n (t)

P∞,0n (t)(P∞n (t)− P∞,0n (t)) +Q∞,0n (t)(Q∞n (t)−Q∞,0n (t))√
(P∞,0n (t))2 + (Q∞,0n (t))2




3.2.4. Constraints

Definition of aggregate loads.

Real power load at feeder n

Pn(t) =
∑
i

Dn,i(t) +DV
n (t) +Dθ

n(t)− gPVn (t), ∀t (38)

Reactive power to be compensated at feeder n bus

Qn(t) =
∑
i

γn,i(t)Dn,i(t)−QV
n (t)−Qθ

n(t)−QPV
n (t), ∀t (39)

Qn(t) ≥ 0 ∀t (40)

Reserve provided by flexible load at feeder n

<n(t) = <θn(t) + <Vn (t) ∀t (41)

Real power load at bus ∞ due to feeder n

P∞n (t) = Pn(t) +
Rn

(vn)2
{

(Pn(t))2 + (Qn(t))2
}
∀t (42)

Reactive power to be compensated at bus ∞ due to feeder n

Q∞n (t) = Qn(t) +
Xn

(vn)2
{

(Pn(t))2 + (Qn(t))2
}
∀t (43)

Total active power load at bus ∞
P∞(t) =

∑
n

P∞n (t) ≥ 0 ∀t (44)

Total reactive power to be compensated at bus ∞
Q∞(t) =

∑
n

Q∞n (t) ≥ 0 ∀t (45)
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Linearized versions of Eqs (42)-(43). The linearized version is obtained through
a Taylor development in the neighborhood of the optimal solution. Here again
an update scheme will be implemented when using the linearized version.

P∞n (t) = Pn(t) +
Rn

(vn)2
{

(P 0
n(t))2 + (Q0

n(t))2 + 2P 0
n(t)[Pn(t)− P 0

n(t)]+

2Q0
n(t)[Qn(t)−Q0

n(t)]
}
∀t (46)

Q∞n (t) = Qn(t) +
Xn

(vn)2
{

(P 0
n(t))2 + (Q0

n(t))2 + 2P 0
n(t)[Pn(t)− P 0

n(t)]+

2Q0
n(t)[Qn(t)−Q0

n(t)]
}
∀t (47)

Power balance.

Real power at bus ∞ is provided by wind turbines and other generators

P∞(t) =
∑

kGk(t) +
∑

`W`(t) ∀t. (48)

Reserve requirements.

Reserve provided by centralized and flexible loads meet the demand for reserve∑
k <k(t) +

∑
n(1 + 2RnP 0

n(t)
(vn)2

)<n(t) ≥ <(t) +
∑

` ξ`W`(t) ∀t. (49)

Capacity constraints.

Real power supply at bus ∞ is bounded by capacity limits and reserve requirement

Gk + <k(t) ≤ Gk(t) ≤ Ḡk −<k(t) ∀t. (50)

Flexible demand at feeder n is bounded

0 ≤ Dn(t) ≤ D̄n ∀t. (51)

Bounds on reserve provided by flexible loads

<Vn (t) ≤ DV
n (t) ≤ D̄V

n (t)−<Vn (t) ∀t, (52)

<θn(t) ≤ Dθ
n(t) ≤ D̄θ

n(t)−<θn(t) ∀t. (53)

Bounds on reactive power compensation provided by flexible loads

0 ≤ QV
n (t) ≤ D̄V

n (t)−DV
n (t) ∀t, (54)

0 ≤ Qθ
n(t) ≤ D̄θ

n(t)−Dθ
n(t) ∀t. (55)
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State equations.

Dynamics and bounds for indoor temperature

θn(t+ 1) = θn(t) + ηlossn,t (θAmbient(t)− θn(t))− ηgainn,t D
θ
n(t) ∀n, t, (56)

θn(t) ≤ θn(t) ≤ θ̄n(t) ∀n, t, (57)

θn(0) = θ0n. (58)

Dynamics for state of discharge of EV’s

xn(t+ 1) = xn(t)− δtη Dn(t) + ∆xn(t) ∀n, t, (59)

0 ≤ xn(t) ≤ x̄tn. (60)

4. Illustrative Numerical Results

We illustrate the linear programming based distribution-market clearing
formulation developed in section 3 by implementing it on a case study where
the regional energy/technology/environment model, ETEM-SG, is calibrated
to represent the Léman region in Switzerland. For the sake of demonstration,
we consider only two distribution feeders as described in Table 2. Loads are
modeled as being connected to these two feeders. This is, of course, an ap-
proximation that retains salient qualitative features but does not correspond
to actual distribution network topology.

Time structure. We focus on a typical winter daily cycle corresponding to
future year 2030, and model it by four unequal length time-slices denoted by
WN, WP1, WM, and WP2, respectively. The fraction of the year represented
by each time-slice is shown in Table 1 below.

Table 1: Duration of Winter Day timeslices

Timeslices Fraction of the year Time interval
WN: Winter night 0.146 12pm - 7am
WP1: Winter morning peak 0.104 7am - 12am
WM: Winter mid-day 0.104 12am - 5pm
WP2: Winter evening peak 0.146 5pm - 12pm
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Grid parameters. The following key parameters are used to describe the
power system:

• System secondary reserve parameter : <(t) = 0.10 GW;

• System reserve coefficient to cover wind generation variability (propor-
tion of centralized wind generation) ξk ≡ 0.5;

• Factor representing reactive power as a proportion of active power con-
sumed by conventional inflexible loads γn ≡ 0.3. This corresponds to a
phase angle φ = 17o and power factor cos(φ) = 0.956 ;

• Variable cost of reserves at the transmission node 0.002 M$/GW;

• Min inside temperature of space heating/conditioning facilities 18oC;

• Max inside temperature of space heating/conditioning facilities 22oC;

Table 2: Feeder characteristics

Feeder Description Resistance Reactance
F1 Industrial zone 0.040 0.100
F2 Residential zone 0.031 0.045

Table 3: Parameters for space heating (oC)

Ambient temperature Heat gain Heat loss
WN 0 750 0.15
WP1 5 500 0.1
WM 10 500 0.1
WP2 5 750 0.15

Capacities and loads from ETEM-SG. We assume that the scenario run by
ETEM-SG has determined year 2030 technology mix and capacities reported
in Table 4 and costs as shown in Table 5.

Table 6 shows the demand devices that are generating loads and Table 7
gives the detail of the loads that are connected at each feeder.
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Table 4: Installed capacities and availability factors (1 – Forced Outage Rate)

for power generation

Centralized Conversion Technologies (GW) Availability Factors
WN WP1 WM WP2

IMP Electricity imports ∞ 1 1 1 1
E01 Hydroelectric VAUD 0.184 0.34 0.34 0.34 0.34
E02 Hydroelectric GENEVA 0.170 0.6 0.6 0.6 0.6
E00 Veytaux pumped storage 0.2625 0 1 1 1
E08 Wind 0.1 0.247 0.239 0.242 0.259
Decentralised Generation Technologies (GW) Availability Factors

WN WP1 WM WP2
E07 PHV solar panels 0.013 0 0.075 0.084 0
RCC CHP combined heat power 0.35 (El.) 0.97 0.486 0.323 0.162

Table 5: Variable generation cost M$/PJ

Centralized Conversion Technologies WN WP1 WM WP2
IMP Electricity imports 50 90 90 90
E0F Gas CC 48 48 48 48
E01 Hydroelectric VAUD 0 0 0 0
E02 Hydroelectric GENEVA 24 24 24 24
E00 Veytaux pumped storage 0 50 50 50
E08 Wind 0 0 0 0
Decentralised Generation Technologies WN WP1 WM WP2
E07 PHV solar panels 0 0 0 0
RCC CHP combined heat power 50 50 50 50
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Table 6: Demand devices generating electric loads GW

Feeder 1 Feeder 2
Industry
NHT Food, textile, leather, wood, paper, editing (conventional load) 0.182 -
CHT Chemical, rubber, glass, stone, metal (conventional load) 0.229 -
MAT Fabrication of machines, equipment, instruments (conventional load) 0.173 -
ALT Others (conventional load) 0.055 -
COT Construction (conventional load) 0.085 -
TRT Services (conventional load) 0.626 -
Electricity - Residential
R11 El. appliances (conventional load) 0.268 0.302
RCL Lighting appliances (conventional load) 0.293 0.335
Heat - Existing Buildings 2-9 appts.
RAT Heat pump old buildings (flexible load) 0.0231 -
Heat - Existing Houses
RBT Heat pump old houses (flexible load) - 0.0208
Heat - New Buildings 2-9 appts.
RCT - Heat pump new buildings (flexible load) - 0.0230
Heat New Houses (PJ/year)
RDT Heat pump - new houses (flexible load) - 0.0198
Hot Water - Buildings
RE1 Residential w.h. solar/elec. (conventional load) - 0.150
hot Water - Houses
RF1 Residential w.h. solar/elec. (conventional load) - 0.029
RFD hot water SFH, Solar (conventional load) - 0.0002
Public Transport
TB1 Tramway (conventional load) 0.0001 0.0001
TC1 Train (conventional load) 0.0112 -
Private Transport
TES Electric car (flexible load) 0.1966 0.1193
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Table 7: Loads at feeders GW

Feeder 1 Feeder 2
Conventional WN WP1 WM WP2 WN WP1 WM WP2
NHT 0.0302 0.0507 0.0523 0.0493 - - - -
CHT 0.0379 0.0636 0.0656 0.0618 - - - -
MAT 0.0287 0.0480 0.0496 0.0467 - - - -
ALT 0.0090 0.0152 0.0156 0.0147 - - - -
COT 0.0141 0.0236 0.0243 0.0229 - - - -
TRT 0.1152 0.1712 0.1721 0.1677 - - - -
R11 0.0508 0.0789 0.1000 0.0380 0.1008 0.0789 0.0626 0.0600
RCL 0.0773 0.0475 0.1000 0.0679 0.1000 0.0475 0.0779 0.1100
RE1 - - - - 0.0086 0.0488 0.0452 0.0474
RF1 - - - - 0.0018 0.0095 0.0084 0.0095
RFD - - - - 0.000009 0.000075 0.000028 0.000084
TB1 0.000001 0.000035 0.000059 0.000041 0.000021 0.000040 0.000020 0.000041
TC1 - 0.0033 0.0034 0.0036 - - - -
Flexible WN WP1 WM WP2 WN WP1 WM WP2
RAT 0.0029 0.0026 0.0026 0.0029 - - - -
RBT - - - - 0.0026 0.0026 0.0029 0.0030
RCT - - - - 0.0026 0.0026 0.0029 0.0030
RDT - - - - 0.0026 0.0026 0.0029 0.0030
TES 0.0006 0.0236 0.0283 0.0241 0.0050 0.0236 0.0070 0.0139
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The energy demanded for electric car battery charging results from the
choices made in the ETEM-SG scenario technology investment optimization.

Table 8 presents the installed capacity of solar panels (E07) and decen-
tralized CHP units (RCC).

Table 8: Generation at feeders GW

Feeder 1 Feeder 2
Decentralized WN WP1 WM WP2 WN WP1 WM WP2
E07 - 0.0020 0.0020 - - 0.0020 0.0020 -
RCC 0.1100 0.0600 0.0400 0.0180 0.2200 0.1100 0.0700 0.0370

Optimal management of the distribution system. We present here the result
of the optimization of the operation of this distribution system. Table 9
shows the power supplied, for each time slice, by each centralized generating
unit connected at ∞-bus.

Table 9: Generation at ∞-bus GW

Real power WN WP1 WM WP2
IMP 0.1813 0.1825 0.3384 0.3168
E0F - - - -
E01 0.0315 0.0630 0.0630 0.0630
E02 0.0510 0.1020 0.1020 0.1020
E00 - 0.2084 0.1959 0.1979
E08 - 0.0239 0.0242 0.0259
Reactive power WN WP1 WM WP2
Total 0.1749 0.1550 0.1625 0.1480
Reserve WN WP1 WM WP2
IMP 0.0015 - - -
E0F - - - -
E01 0.0315 - - -
E02 0.0510 - - -
E00 - 0.0546 0.0671 0.0651
E08 - - - -

Table 10 shows the reactive power generated by conventional loads and
compensated by flexible loads and decentralized units.
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Table 10: Reactive power generated (+)/compensated (-) at feeders GW

Feeder 1 Feeder 2
Conventional WN WP1 WM WP2 WN WP1 WM WP2
NHT -0.0091 -0.0152 -0.0157 -0.0148 - - - -
CHT -0.0114 -0.0191 -0.0197 -0.0186 - - - -
MAT -0.0086 -0.0144 -0.0149 -0.0140 - - - -
ALT -0.0027 -0.0045 -0.0047 -0.0044 - - - -
COT -0.0042 -0.0071 -0.0073 -0.0069 - - - -
TRT -0.0346 -0.0514 -0.0516 -0.0503 - - - -
R11 -0.0152 -0.0237 -0.0300 -0.0114 -0.0302 -0.0237 -0.0188 -0.0180
RCL -0.0232 -0.0142 -0.0300 -0.0204 -0.0300 -0.0142 -0.0234 -0.0330
RE1 - - - - -0.0026 -0.0147 -0.0136 -0.0142
RF1 - - - - -0.0005 -0.0029 -0.0025 -0.0029
RFD - - - - -0.0000 -0.0000 -0.0000 -0.0000
TB1 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
TC1 - -0.0010 -0.0010 -0.0011 - - - -
Flexible WN WP1 WM WP2 WN WP1 WM WP2
RAT 0.0029 0.0032 0.0032 0.0029 - - - -
RBT - - - - 0.0026 0.0026 0.0022 0.0022
RCT - - - - 0.0031 0.0032 0.0029 0.0028
RDT - - - - 0.0022 0.0024 0.0021 0.0020
TES 0.0006 0.0236 0.0717 0.0241 0.0050 0.0236 0.0070 0.0342
Decentralized WN WP1 WM WP2 WN WP1 WM WP2
E07 0.0100 0.0080 0.0080 0.0100 0.0100 0.0080 0.0080 0.0100
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Table 11 shows the contribution of secondary reserves provided by heat
pumps (RAT, ..., RDT) and electric cars (TES).

Table 11: Reserve at feeders GW

Feeder 1 Feeder 2
Flexible WN WP1 WM WP2 WN WP1 WM WP2
RAT 0.0029 0.0026 0.0026 0.0029 - - - -
RBT - - - - 0.0026 0.0026 0.0022 0.0022
RCT - - - - 0.0026 0.0026 0.0029 0.0028
RDT - - - - 0.0022 0.0024 0.0021 0.0020
TES 0.0006 0.0236 0.0283 0.0241 0.0050 0.0236 0.0070 0.0139

Finally, in Table 12 we report the power losses in the distribution network.

Table 12: Real and reactive power losses in % of apparent power

Feeder 1 Feeder 2
WN WP1 WM WP2 WN WP1 WM WP2

Real power 1.1 2.0 2.3 2.0 0.1 0.4 0.5 0.7
Reactive power 2.7 4.8 5.7 4.9 0.2 0.5 0.6 1.0

Remarks. The following features of the optimal solution are apparent:

1. The cost minimizing solution realizes the full potential of distributed
generation and resources (EVs, heat pumps, storage and the like) to
provide secondary reserves and demand response.

2. The flexible loads and electric cars can provide a significant proportion
of the secondary reserves needed to compensate for intermittent and
volatile renewable generation.

3. Power electronics such as inverters accompanying solar panels and
chargers accompanying electric cars can compensate 20% (at night
WN) to 64% (in the afternoon WM) of the reactive power consumed
by inflexible loads.

This synergistic role of flexible loads is a major facilitator of efficiently inte-
grating variable energy generation in the grid of the near future.
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5. Conclusion and perspectives

In this paper we have adapted the non-linear load flow distribution market
clearing approach of [36] to a computationally efficient linear programming
approximation and have extended it to model flexible space conditioning
loads and secondary reserves. We have shown that a straightforward lin-
earization with one or two iterations to improve on the linearization gap can
provide an accurate representation of market-based-marginal-cost-pricing in-
centives. Flexible loads and Distributed Energy Resources can respond to
marginal cost based prices to provide demand-response, secondary reserves,
and reactive power compensation. In numerical illustrations of the model,
we have shown that these effects are non-negligible and we concluded that
they should be taken into account in the regional integrated energy models
that are currently developed in several countries.

In [10] the authors introduced constraints on regional power systems with
high penetration of renewables, based on network reliability indices that were
derived from an evaluation of the kinetic and magnetic potential storage in
rotating generators, and the impact of an increasing share of non-rotating re-
newable generation. In the absence of additional fast reserves, they concluded
that an empirical rule should be enforced, limiting to 30 % the maximum
generation from renewables in non-interconnected zones. In our approach,
developed in section 2, we address directly the fact that renewable generation
exceeding a certain threshold results in a considerably higher demand for fast
secondary reserves. Rather than limiting the integration of renewables be-
yond that threshold, we explicitly model additional reserve requirements and
allow DERs and flexible loads to provide the requisite additional reserves, and
thus deal with the reliability concern addressed in [10]. We conclude by not-
ing that the interesting feature of smart grid distribution systems is that they
allow the provision of stability sustaining reserve to be provided by the load
side. This synergistic complementarity of renewable generation and flexible
loads must be modeled and accounted for in the regional integrated energy
models, like TIMES [6], OSeMOSYS [17, 46], or ETEM-SG [3]. The lin-
ear programming formulation presented here can be easily included in these
models.
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